

Donaldson beliefert

Produkthandbuch zur Kraftstoff-und Schmiermittelfiltration

Für die Filtrationsanforderungen ab der Raffinerie - von der Befüllung des Großtanks bis hin zur endgültigen Verwendungsstelle

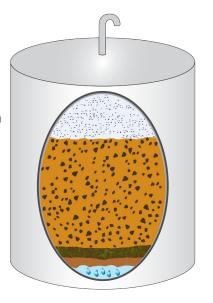
Filterauswahl Single-Pass-Filtration Reinigung Filter und Filterköpfe Verteilerbaugruppen Schutz **Belüfter und Air Reservoir Vent Letzter Schliff** Filter für Entnahmestellen und -filterköpfe Systemdesign Filterkopf Überblick zu **ISO-Codes** Temperatur und Viskosität 13 **Flussrate und Druck** 14 15 **Systemskalierung** 16 **Kontakt**

Warum **Großmengenfiltration?**

Für die heutigen ausgereiften Technologien, wie etwa die Erhöhung des Einspritzdruckes bei Dieselmotoren, benötigen Geräte und Anlagen technische Flüssigkeiten mit einem höheren Reinheitsgrad als je zuvor.

Die Großmengenfiltrationssysteme von Donaldson tragen dazu bei, dass Ihre Kosten für das Austauschen von Komponenten geringer und die Ausfallzeiten von Maschinen und Fahrzeugen minimiert werden. Kurz gesagt reduziert Donaldson Ihre Gesamtbetriebskosten.

Kraftstoff und Öl werden in Tanklastzügen, mit Güterzügen oder mittels Pipelines von der Raffinerie zum Großlager transportiert.


Dort wird in einen anderen Tanklastzug umgeladen und zu Ihnen vor Ort gebracht.

An Ihrem Standort werden dann entweder kleinere Tanks befüllt oder es werden direkt Maschinen und Anlagen bedient.

Bei jedem Umfüllen von Flüssigkeit können weitere Verschmutzungen hinzukommen.

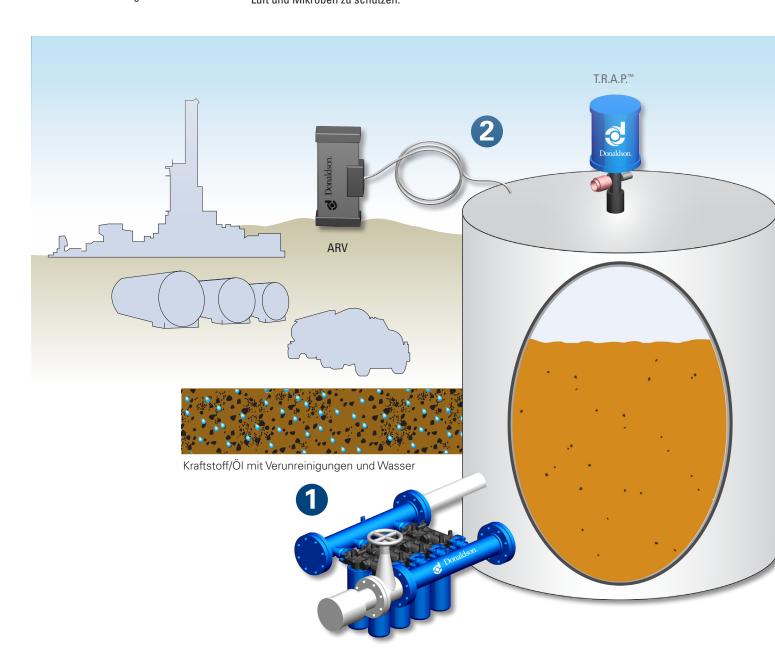
Speichertank mit Verunreinigungen durch Schmutz, Wasser und Mikroben

Verunreinigungen und Wasser sind die größten Feinde von Kraftstoffen und Schmiermitteln, die die Leistungsfähigkeit und Langlebigkeit von Fahrzeugen und Maschinen beeinträchtigen.

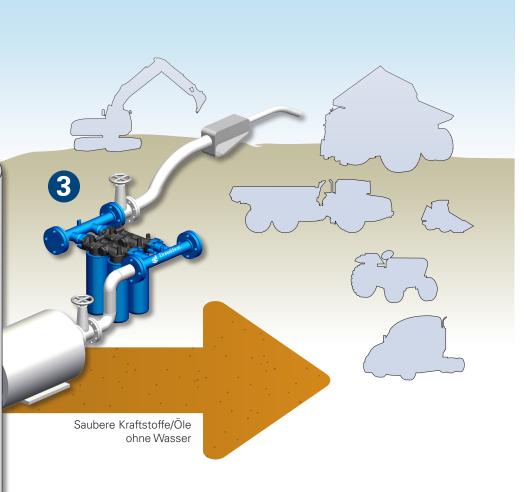
Indem Verunreinigungen mittels Großmengenfiltration entfernt werden, bevor die Flüssigkeit in die Maschine gepumpt wird, wird die Effektivität der maschineneigenen Filtrationssysteme verbessert und die aufgrund neuer Richtlinien erforderliche fortschrittliche Systemtechnologie unterstützt.

Großmengenfiltrationssysteme für Kraftstoff und Schmiermittel

Reinigung. Schutz.


Donaldsons Single-Pass-Filtration beim Befüllen reduziert das Risiko der Verunreinigung im Großtank und trägt dazu bei, den erforderlichen Reinheitsgrad zu erhalten.

Die kompakten und leicht austauschbaren Filter von Donaldson sind ein wesentlicher Faktor zur Sicherung der Flüssigkeitsqualität und können bei minimalen Druckabfall für hohe Flussraten konfiguriert werden.


Wasserabsorptionsfilter, T.R.A.P.™
Breather und Active Reservoir Vent™
(ARV)-Produkte verringern das Risiko
von Feuchtigkeit und Verunreinigungen
im Großtank und sorgen dafür, dass die
Flüssigkeiten sauber bleiben und frei
von Wasser aus der Umwelt. Kombiniert
verwendet helfen diese Produkte, die
Flüssigkeiten für die Dauer ihrer Lagerung
vor freiem Wasser, Verunreinigungen aus der
Luft und Mikroben zu schützen.

Letzter Schliff.

Da labile Flüssigkeiten und der Tank selbst eine Quelle der Verunreinigung darstellen können, wird durch Donaldson-Filter bei einer letzten Filtration an der Entnahmestelle sichergestellt, dass die angestrebten ISO-Reinheitsgrade erzielt werden.

Reinigung. Schutz. Letzter Schliff.™

Donaldson beliefert

Hervorragende Großmengen-filtration

Reduzierte Ausfallzeiten

Geringere Gesamtbetriebskosten

Modulare Lösungen

Design nach kundenspezifischen Anforderungen

Kompakte Installation

Niedrige Installationskosten

Einfache Wartung

Einfache Lieferung

Variable Flussraten

Minimaler Druckabfall

Materialkompatibilität

Geringe Lagerkosten

Weltweite Präsenz

Auswahl des geeigneten Filters

Die Auswahl des richtigen Filters für Ihr System ist leichter, als Sie denken

Bedenken Sie einfach einige Grundprinzipien:

Die Viskosität der Flüssigkeit spielt eine große Rolle bei der Begrenzung des Filterdurchflusses. Um einen adäquaten Durchfluss zu gewährleisten und einen übermäßigen Druckabfall zu verhindern, ist die richtige Wahl des Filters sehr wichtig (siehe Viskositätswerte auf Seite 13).

Durch Auswahl der richtigen Filterfeinheit, mit der die vorgeschriebene ISO-Reinheitsklasse erzielt wird, vermeiden Sie, dass das System mit zusätzlichen Komponenten überdimensioniert ist und damit unnötige Kosten.

Unterschiedliche Typen von Öl besitzen unterschiedliche Eigenschaften. Wählen Sie den Filter aus, dessen Filtermedium/Flüssigkeits-Eigenschaften am geeignetsten sind.

Gebräuchliche ISO-Reinheitsklassen

ISO 22/21/18

Typischer

Reinheitsgrad

angelieferter

Flüssigkeiten

ISO 18/16/13

Vorgeschriebener Reinheitsgrad für Getriebe-/ Motoröle

ISO 16/14/11

Reinheitsklasse für Hydraulik-/ Getriebeöle

Vorneschr ISO-

ISO 14/13/11

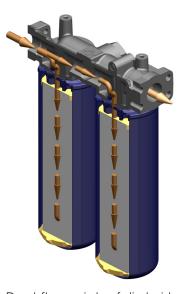
Reinheitsklasse für Dieselkraftstoff

Typischer Anwendungsbereich	Viskosität	Reinheitsklasse	FILTER
Dieselkraftstoff	0-100 cSt	14/13/11	P568666
Getriebeöl Hydrauliköl Glykole <150°F Wässrige Hydraulikemulsionen	0-500 cSt	16/14/13	P568665
Motoröl Zahnradöl Glykole Phosphatester	0-6000 cSt	18/16/13	P568664

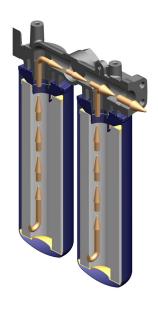
Donaldson beliefert

Wassererkennung

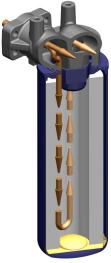
Enthalten
Ihre Öle oder
Kraftstoffe
größere
Mengen
Wasser, mit
denen sie
letztendlich
Fahrzeuge und
Maschinen


verschmutzen?

Mithilfe von Wassererkennungsfiltern und -systemen, die superabsorbierende Medien enthalten, können Sie Downstream-Verunreinigungen verhindern. Der wasserabsorbierende Filter (P570248) von Donaldson unterbricht den Durchfluss, sobald in der Flüssigkeit größere Mengen freien Wassers festgestellt werden. Wenn Sie Ihr System mit Wassererkennungsfiltern ausrüsten möchten, ist es von großer Wichtigkeit, die Filtration richtig zu konfigurieren. Dazu stellt Ihnen Donaldson einen Experten zur Verfügung, der Ihnen bei der Konfiguration eines Systems behilflich ist, das Ihren spezifischen Anforderungen an Durchfluss und Druckabfall gerecht wird.


Single-Pass-Filtration

Konzipiert für Systeme beliebiger Größe, mit minimalem Druckabfall


Die Großmengenfiltration von Donaldson wird in Parallelflusskonfigurationen hergestellt und angeschlossen, um den Druckabfall innerhalb der Baugruppe gering zu halten. Mit Single-Pass-Filtration erzielen die Produkte die vorgeschriebene Flüssigkeitsreinheit.

Der Durchfluss wird auf die beiden dargestellten Filter aufgeteilt. Die eine Hälfte der Durchflussmenge fliesst durch den ersten Filter und die andere durch den zweiten. Der Durchfluss ist nicht sequenziell durch beide Filter.

Die Flüssigkeit wird in einem Durchlauf durch das Filtermedium geführt, und die vorgeschriebene Reinheitsklasse wird erzielt.

Die saubere Flüssigkeit wird aus dem Filter, durch den Kopf in einen Speichertank oder zur direkent Verwendung gedrückt.

Donaldson beliefert

Material-Kompatibilität

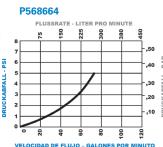
Donaldsons Großmengenfilterköpfe bestehen aus Aluminium mit Stahleinsätzen, durch die das Festfressen des Kopfes mit dem Filter verhindert wird.

Viton®-Dichtungen werden in allen Modellen (sofern nicht anders angegeben) verwendet, um die Verträglichkeit mit den meisten Flüssigkeiten zu gewährleisten.

Die Verteiler bestehen aus lackierten Karbonstahlrohren mit SAE-Flansch 150. Verteiler dienen dazu, mehrere Dualköpfe (P568583) miteinander zu kombinieren, um mit hohen Flussraten arbeiten zu können.

Viton ist eine eingetragene Marke von E. I. du Pont

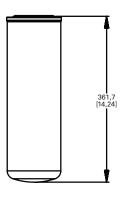
Reinigung

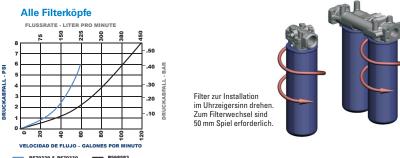

Filter und Filterköpfe

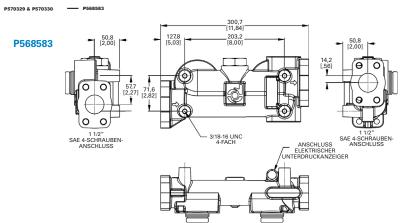
Kraftstoff und Öl sollten beim Befüllen gereinigt werden, um die Reinheit im Inneren von Großtanks zu gewährleisten. Diese Produkte können auch am Entnahmepunkt verwendet werden.

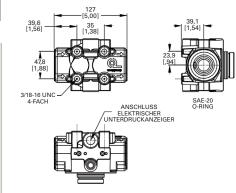
FILTER	Typischer Anwendungsbereich	Max. Betriebsdruck	statischer Berstdruck	Max. Durchfluss	Betriebstemperatur	Reinheitsklasse	ISO-Filtereffizienz
P568664	Motoröl und Zahnradöl	350 PSI/24.1 bar	800 PSI/55,2 bar	65 g/min / 246 l/min	-40°F-190°F/-40°C-88°C	18/16/13	25 micron@Beta 2000
P568665	Getriebeöl und Hydrauliköl					16/14/11	7 micron@Beta 2000
P568666	Alle Kraftstoffe	350 PSI/24,1 Dar				14/13/11	4 micron@Beta 2000
P570248	Wasserabsorption für ethanolfreie Flüssigkeiten*						20 micron@Beta 2000

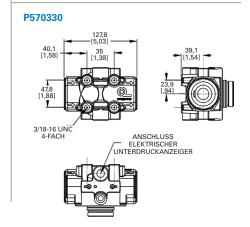
^{*}Enthält expandierende Medien, die das Eindringen von Wasser in Speicher- oder Maschinentanks verhindern. Nicht empfohlen zur Kontaminationsbeseitigung.



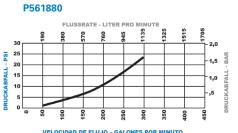


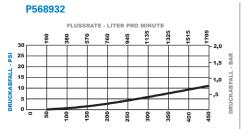


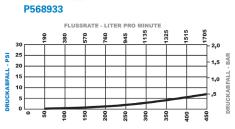



FILTER- KÖPFE	Anzahl Filter	Montageanschluss	Max. Betriebsdruck	Nomineller statischer Berstdruck	Max. Durchfluss
P570329	1	SAE-20 O-Ring			65 g/min / 246 l/min
P570330	1	1 1/4" NPT	350 PSI/24 bar	800 PSI/55 bar	65 g/min / 246 l/min
P568583	2	1 1/2" SAE 4-Bolt			125 g/min / 473 l/min

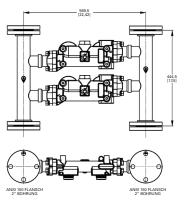
P570329

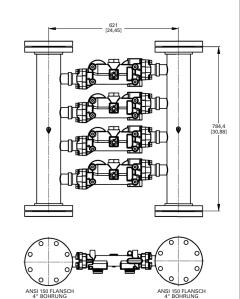


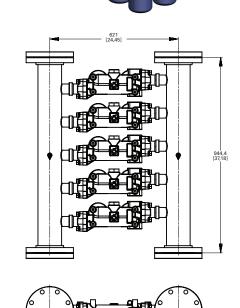

Reinigung


Verteilerbaugruppen

VERTEILER	Anzahl Filter	Montageanschluss	Max. Durchfluss
P561880	4	2" 150 Flansch	250 g/min / 946 l/min
P568932	8	4" ANSI 150 Flansch	500 g/min / 1893 l/min
P568933	10	4" ANSI 150 Flansch	600 g/min / 2271 l/min







ANSI 150 FLANSCH 4" BOHRUNG

ANSI 150 FLANSCH 4" BOHRUNG

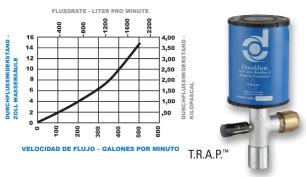
Schutz

Schützen Sie Ihre Investition während der Lagerung

Der Donaldson T.R.A.P.™¹ Breather reduziert das Risiko des Eindringens von Staub und Feuchtigkeit in den Tank über die Belüftungsöffnung und ermöglicht gleichzeitig hohe Flussraten in den und aus dem Tank.

Schützen Sie gelagerte Flüssigkeiten vor Feuchtigkeit mit Active Reservoir Vent™ (ARV). ARV zieht mithilfe von trockener Druckluft Feuchtigkeit aus Flüssigkeiten².

Ein **ARV** bläst trockene Luft über die eingelagerten Flüssigkeiten, die so freies und emulgiertes Wasser aufnimmt.


ARV	(scfm)	Max. empfohlene Tankgröße	Höhe	Breite	Tiefe	Gewicht	Medium	Montageanschluss	Elektrische Anforderungen
P568790	3	10.000 Gal/37.900 Liter	14"/355 mm	12"/300 mm	5"/127 mm	15 lbs/7 kg	Druckluft/Stickstoff	1/2" NPTF 110 V/50-60 Hz AC, ca. 4 W	
P568791	10	30.000 Gal/113.700 Liter	35"/889 mm	12/300 111111	3/12/ 111111	33 lbs/15 kg	Druckiuly StickStoll	1/2 NFIF	110 V/30-00 HZ AG, Ca. 4 VV

T.R.A.P.™ Breather verhindern, dass Staub und Feuchtigkeit über die Belüftungsöffnung in den Tank eindringt und sorgen damit für sauberere, trockenere Luft.

T.R.A.P. BREATHER	Max. Durchfluss	Filtereffizienz	Ersatzfilter	Anschluss
KYX920006	500 g/min / 1893 l/min	>97 % bei 3 Mikrometer	P923075	1,5" NPT Innengewinde

Funktionsweise des T.R.A.P.™ Breather

Aufnahmezyklus (Inhalation)

- Der Kreislauf "atmet" Wasserdampf enthaltende Luft ein.
- 2 Der T.R.A.P. Breather entnimmt Feuchtigkeit und Partikel aus der eingehenden Luft und gibt nur saubere, trockene Luft an den Kreislauf ab.

Abgabezyklus (Exhalation)

- Während des "Ausatmungszyklus" lässt der T.R.A.P. Breather zu, dass die Luft ungehindert nach außen abziehen kann.
- Während die trockene Luft ausströmt, nimmt sie die vom T.R.A.P. Breather aufgenommene Feuchtigkeit auf und bläst sie nach draußen, wodurch die Wasseraufnahmekapazität des T.R.A.P. Breather komplett regeneriert wird.

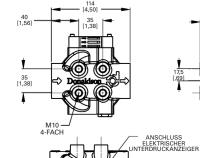
¹Hochentwickelter thermisch reaktiver Schutz

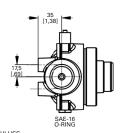
²Druckluft und Netzstrom werden nicht von Donaldson bereitgestellt

Letzter Schliff

Konzipiert für die Hochdruck-Flüssigkeitsentnahme aus Großtanks

Filter am Einsatzort "polieren" ("polish") oder besser filtern Verunreinigungen heraus, die während der Lagerung oder während der letzten Umfüllung aufgenommen wurden. Die im Abschnitt "Clean" (Seite 8-9) hervorgehobenen Köpfe, Filter und Verteiler können ebenfalls zum "Polieren" von Flüssigkeiten eingesetzt werden, die aus dem Speichertank bezogen werden. Flüssigkeitsabgabesysteme für höhere Drücke verwenden die unten aufgeführten Produkte.




Filter tur Installation im Uhrzeigersinn drehe Zum Filterwechsel sind 50 mm Spiel erforderlich.

FILTER FÜR DIE ENTNAHMESTELLE	Typischer Anwendungsbereich	Nom. Kollabierungsdruck des Elements	Max. Betriebsdruck	Nomineller statischer Berstdruck	Max. Flussbereich	Betriebstemperatur	Mikrometer	Dichtungen
P565184							4	
P565185	Für Hydraulik-, Zahnrad-, Getriebe- und Motoröle						7	Viton®
P565183	detriese and wictorde					15		
P569826		300 PSI/20 bar	800 PSI/55 bar	1700 PSI/117 bar	50 g/min / 189 l/min	-20°F-250°F/-29°C-121°C	2	
P569824	Für Skydrol®						5	EDDM
P569823	Fur Skydroi						8	EPDM
P569825							14	

FILTERKÖPFE FÜR DIE ENTNAHMESTELLE	Max. Betriebsdruck	Nomineller statischer Berstdruck	Max. Durchfluss	Anzahl Filter	Betriebstemperatur	Material	Kompatible Filter	Montageanschluss
P566023			r 50 g/min / 189 l/min	1	-40DF-250DF/-40DC-121 DC	Aluminiumkopf mit Viton- Dichtungen	P565183 P565184 P565185	Einzelkopf SAE-16 O-Ring
P566024	800 PSI/55 bar	1700 PSI/117 bar						Einzelkopf mit 50 PSI //3,5 bar Bypass SAE-16 O-Ring
P569830	800 PSI/55 Bar	1700 PSI/117 Dar				Aluminiumkopf mit EPDM- Dichtungen für Skydrol®	P569826 P569824 P569823 P569825	Einzelkopf SAE-16 O-Ring
P569831								Einzelkopf mit 50 PSI //3,5 bar Bypass SAE-16 O-Ring

Sowohl die Metallgehäuse als auch die Filter für die Entnahme aus Kunststoff sind für den Einmalgebrauch bestimmt und lassen sich für Recyclingzwecke leicht auseinandernehmen.

Überblick über die ISO-Codes

Erzielen der vorgegebenen Reinheit einer Flüssigkeit

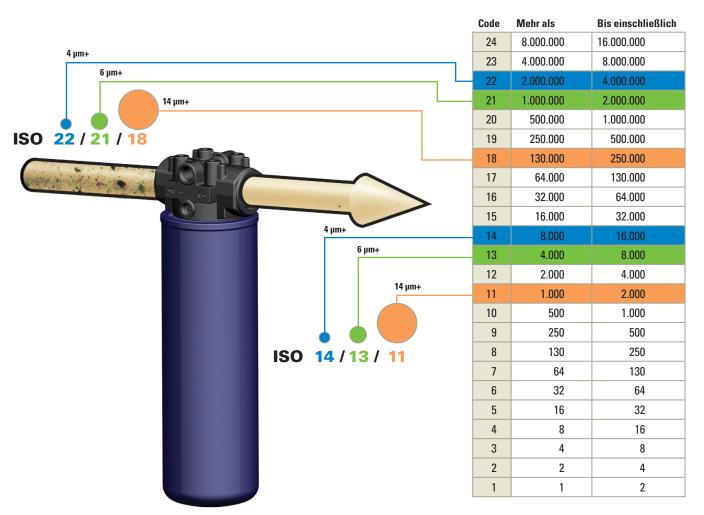
ISO 4406 Reinheitscodes bestehen aus drei Zahlen, die die Anzahl der in der Flüssigkeit vorliegenden Partikel angeben, die größer oder gleich 4 Mikrometer, 6 Mikrometer bzw. 14 Mikrometer sind. Auf dieser Seite wird dargestellt, wie Sie in einer Ausgangssituation mit dem Reinheitsgrad ISO 22/21/18 den Reinheitsgrad ISO 14/13/11 erzielen.

Für die Konfiguration von **Filtrationssystemen** erforderliche Informationen

Flüssigkeitsverbrauch

Flüssigkeitseigenschaften zur Ermittlung der Viskosität bei Transfertemperatur

Flussrate und Druck


Größe bekannter Partikel in Mikrometern

Korn Speisesalz	100 µm
Menschliches Haar	80 µm
Untere Sichtbarkeitsgrenze	40 µm
Weißes Blutkörperchen	25 µm

Talkumpuder	10 µm
Rotes Blutkörperchen	8 µm
Bakterium	2 µm
Schlick	<5 μm

ISO 4406 Reinheitscodes

Anzahl der Partikel pro 100 Milliliter

Temperatur und Viskosität

Die Bedeutung der Temperatur für die **Konfiguration Ihres Filtrationssystems**

Die Flüssigkeitsviskosität, gemessen in centiStokes (cSt) oder Saybolt Seconds Universal (SSU oder SUS), ist der Widerstand einer Flüssigkeit gegenüber dem Fließen (Dicke einer Flüssigkeit). Flüssigkeiten mit geringer Viskosität passieren Filter mit weniger Widerstand als Flüssigkeiten mit hoher Viskosität. Bei Flüssigkeiten mit hoher Viskosität kommt es aufgrund des größeren Widerstands beim Passieren des Mediums zu einem höheren Druckabfall.

Je kälter die Flüssigkeit, umso größer ist ihre Viskosität. Für die Konfiguration eines Großmengenfiltrationssystems sollte daher die niedrigste potenzielle Temperatur der Flüssigkeit zugrunde gelegt werden. Aufgrund der hohen spezifischen Wärmekapazität von Flüssigkeiten ist die niedrigste Umgebungstemperatur möglicherweise keine akkurate Widerspieglung der tatsächlichen Flüssigkeitstemperatur. Vermeiden Sie es. Ihr System größer als notwendig zu konfigurieren, indem Sie die Temperatur der gelagerten Flüssigkeit und nicht die niedrigste Umgebungstemperatur zugrunde legen, die im Allgemeinen niedriger ist als die Temperatur der Flüssigkeit während der Lagerung oder des Transports.

Für die **Konfiguration von Filtrationssystemen** erforderliche Informationen

Flüssigkeitsverbrauch

Flüssigkeitseigenschaften zur Ermittlung der Viskosität bei Transfertemperatur

Flussrate und Druck

Kinematische Viskosität von Kraftstoff/Öl in Abhängigkeit von der Temperatur in centiStokes (cSt)

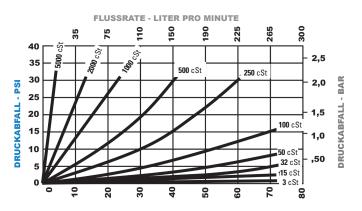
SAE Za	SAE Zahnradöl				75W		80W	85W		90				
SAE M	lotoröl		5W	10W		20	20 30		40	50				
ISO-KI	asse		15	22	32	46	68	100	150	220	320	460	680	
°F	°C	Diesel												
248	120				3,7	3,5	5,7	7,3	9,3	11,7	14,7	18,2	22,9	
230	110				4,4	5,5	7,0	9,0	11,7	14,9	18,9	23,7	30,2	
212	100		1	4,5	5,4	6,8	8,8	11,4	15,0	19,4	25,0	31,8	41,1	
194	90		3	5,3	6,7	8,5	11,2	14,8	19,8	26,0	34,1	44,0	57,9	
176	80		5	6,5	8,5	11,0	14,8	19,9	27,1	36,2	48,2	63,3	84,8	
158	70		6,2	8,5	11,1	14,8	20,2	27,7	38,5	52,4	71,1	95,2	130	
140	60		8	12	15,1	20,6	28,7	40,2	57,2	79,6	110	151	211	
122	50		11	15	21,5	29,9	42,9	61,5	98,7	128	181	254	365	
104	40	1	15	22	32	46	68	100	150	220	320	460	680	
86	30	2	21	32	50,7	75,6	116	175	271	409	613	907	1380	
68	20	3	33	51	86,7	135	214	334	536	838	1290	1980	3130	
50	10	4	52	87	162	264	438	711	1190	1920	3070	4870	8020	
32	0	5	85	180	340	585	1020	1720	2990	5060	8400	13900	23900	
14	-10	9	185	375	820	1500	2770	4880	8890	15700	27200	47000	85000	
-4	-20	15	400	800	2350	4650	9120	16800	32300	60000				

Flussrate und Druck

Großmengenfiltrationssysteme müssen korrekt konzipiert werden, damit sie die Anforderungen der erforderlichen Reinheitsklasse erfüllen. Um für eine bestimmte Anwendung ein effizientes System zu konfigurieren, ist es von großer Wichtigkeit, den Filtertyp und die Anzahl der Filter korrekt zu wählen, so dass damit bei der gegebenen Viskosität ein minimaler Druckabfall gewährleistet werden kann.

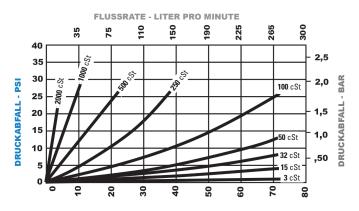
Für die Konfiguration von **Filtrationssystemen** erforderliche **Informationen**

Flüssigkeitsverbrauch

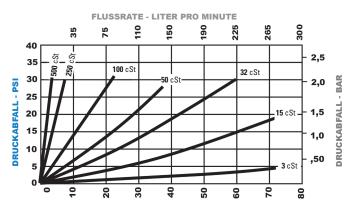

Flüssigkeitseigenschaften zur Ermittlung der Viskosität bei Transfertemperatur

Flussrate und Druck

Bei einer höheren Flussrate erhöht sich der Widerstand an den Filtern, so dass es schwieriger wird, den idealen Systemdruck aufrechtzuerhalten. In Verbindung mit der Viskosität stellt die gewünschte Flussrate einen weiteren kritischen Faktor bei der Planung dar.


Die Diagramme stellen den Druckabfall für Flüssigkeiten unterschiedlicher Viskositäten dar, wenn sich die Flussrate durch einen bestimmten Filter erhöht. Je steiler die Gerade, desto mehr Filter müssen dem System hinzugefügt werden, um das Flüssigkeitsvolumen zu verteilen und auf diese Weise die Flussrate durch die einzelnen Filter zu reduzieren und den optimalen Druck aufrechtzuerhalten.

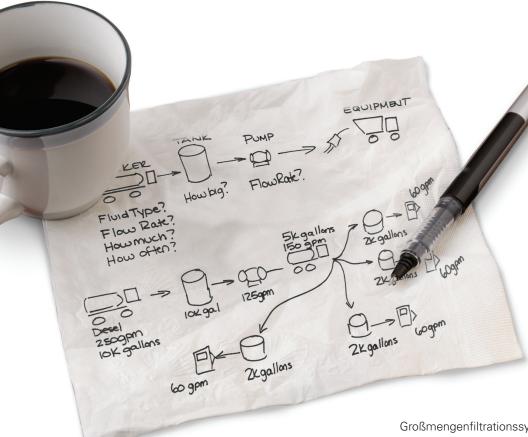
P568664 Motoröl und Zahnradöl


VELOCIDAD DE FLUJO - GALONES POR MINUTO

P568665 Getriebeöl und Hydrauliköl

VELOCIDAD DE FLUJO – GALONES POR MINUTO

P568666 Alle Kraftstoffe


VELOCIDAD DE FLUJO – GALONES POR MINUTO

Systemkonfiguration

Anpassen des Systems

So konfigurieren Sie eine Filtrationsanwendung Beispiel

1	Ermitteln Sie die Flussrate, den Flüssigkeitstyp und die Einschränkung für den Druckabfall.	Flussrate	40 g/min / 151 l/min					
	Für neue Systeme sollte der Druckabfall idealerweise unter 15 PSI/1 bar liegen.	Flüssigkeitstyp	ISO 68 Hydraulik/ Getriebeflüssigkeit					
		Systemdruckabfall	10 PSI/0,7 bar					
2	Mithilfe der Tabelle auf der vorherigen Seite können Sie die Flüssigkeitsviskosität anhand des Typs und der Temperatur der Flüssigkeit bestimmen.	Temperatur beim Transfer	68°F/20°C					
	Trussigner bestimmen.	Viskosität ISO 68 bei 68°F/20°C	214 cSt					
3	Wählen Sie den entsprechenden Filter (siehe Seite 8 und 11).	P568665						
4	Ermitteln Sie mithilfe der entsprechenden Tabelle den Druckabfall anhand der Flussrate und der Flüssigkeitsviskosität. <i>Diese Zahl ist der durch einen Filter erzeugte Druckabfall.</i>	Der ungefähre Druck 68°F/20°C durch eine beträgt 20 PSI/1,4 ba	n P568665-Filter					
5	Teilen Sie den Druckabfall aus Schritt 4 durch den gewünschten Systemdruckabfall. Das Ergebnis ist die Anzahl der Filter, die erforderlich sind, um die Flüssigkeit bei Einhaltung der ermittelten Flussrate adäquat zu reinigen.	20 (PSI gesamt)/10 (S 1,4 (bar gesamt)/0,7 (ystemdruckabfall) Systemdruckabfall) = 2					
	Ergebnis: Diese Anwendung erfordert zwei Filter vom Typ P568665.							

Wir lassen Sie nicht im Stich

Lassen Sie sich von einem Donaldson-Experten mit Empfehlungen zur Konfiguration und Positionierung der Donaldson-Filter unterstützen. Sie können uns bei der Ausarbeitung Ihres Systems helfen, indem Sie uns folgende Informationen zur Verfügung stellen:

Antworten auf die Schritte 1-5 oben.

Eine Skizze Ihres Flüssigkeitstransferprozesses (von Hand gezeichnete Skizze reicht vollkommen) und/oder

Fotos von Ihrem Standort (Tanks, Einlässe und Auslässe).

Rufen Sie einfach die umseitig angegebene Nummer an, um den ersten Schritt zu tun.

Weltweite Präsenz mit lokalem Flair

Donaldson hat ein globales Vertriebsnetzwerk aufgebaut, über das wir für unsere Kunden lokal als auch weltweit präsent sind. Wir operieren als globales Unternehmen mit zahlreichen primären Vertriebsstandorten, die ein ausgebautes Netzwerk regionaler Vertriebszentren und Lagerhäuser unterstützen.

Die Vertriebszentren von Donaldson sind strategisch so positioniert, dass Filtrations- und Emissionsprodukte schnell und präzise geliefert werden können, wo immer Ersatz benötigt wird. Wir arbeiten mit einem Netzwerk von Transport- und Logistikdrittunternehmen sowie mit Sammelgutspediteuren und Cross-Docking-Dienstleistern zusammen, um den Erwartungen unserer Kunden gerecht zu werden bzw. sie zu überbieten.

Alle Regionen der Welt sind durch unser globales Netzwerk von Vertriebszentren abgedeckt. Wir richten unser Hauptaugenmerk auf die lokale Kundenunterstützung und auf die Entwicklung der Fähigkeiten unserer Mitarbeiter. Um unseren Kunden bei der Bestellungserfüllung die bestmöglichen Optionen zu gewähren, investieren wir fortwährend in großem Maße in Anlagen, Systeme, Lieferkettenbeziehungen und Personalführung.

Donaldson Company, Inc. PO Box 1299 Minneapolis, MN 55440-1299

www.buydonaldson.com

www.donaldsonbulkfiltration.com

Broschüre Nr. F111500 (7/11)
© 2011 Donaldson Company, Inc. Alle Rechte vorbehalten. Donaldson Company, Inc. behält sich das Recht vor, ein Modell oder eine Spezifikation jederzeit und ohne Vorankündigung zu ändern oder den Vertrieb einzustellen. Gedruckt in den USA.

bulk.filtration@donaldson.com

Nordamerika 800-374-1374

Brasilien 55-11-2119-1604

Mexico, Lateinamerika und

Karibik 52-449-910-6150

Europa 32-16-38-3811 Südafrika 27-11-997-6000 Südostasien 65-6311-7373 Großchina 852-2405-8388 Japan 81-42-540-4112 Korea 82-2-517-3333 Australien 61-02-4350-2033 Indien 91-124-4807400-500